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This paper studies the occurrence of record events in score populations which grow stochastically in time. In
Rényi’s basic record model, a population of independent and identically distributed (i.i.d.) random scores
grows deterministically—a single new score being added at each time step. Rényi’s record theorem asserts that
the resulting record events are independent, and that their occurrence probabilities decrease harmonically in
time. Moreover, Rényi’s result is universal—being independent of the distribution of the i.i.d. random scores.
This paper considers an arbitrary stochastic growth of the score population—allowing the number of the i.i.d.
random scores added at each time step to follow arbitrary stochastic dynamics. Exploring the stochastic growth
model we: (i) establish a general analog of Rényi’s record theorem; (ii) show that universality with respect to
the distribution of the i.i.d. random scores is maintained; (iii) compute the distribution of the waiting times for
record events; (iv) analyze the dependencies/independencies of the record events; and (v) analyze the aging/

stationarity of the record events.

DOLI: 10.1103/PhysRevE.80.061117

I. INTRODUCTION

Extreme value theory studies the statistics of extremes
[1,2] and is of major importance in the quantitative analysis
of rare and catastrophic events such as floods in hydrology,
large claims in insurance, crashes in finance, material failure
in corrosion analysis, etc [3,4]. One of the topics addressed
by extreme value theory is record events [5,6]. The study of
record events applies to various fields of science—some re-
search examples include: athletics [7], evolution in fitness
landscapes [8], climate change [9], and global warming [10].

Consider a sequence of independent and identically dis-
tributed (i.i.d.) random scores {X(7)},~, indexed by discrete
time (r=1,2,---). The random score can represent, for ex-
ample, the jump a random walker makes at time 7. The ran-
dom score X(7) is said to be a record if it is greater than all
previous scores [X(1),---,X(t=1)]. Let R(r) denote the
record event {X(z) is a record}. Then, a celebrated theorem by
Rényi asserts that [11]: The record events {R(t)},~, are in-
dependent, and their occurrence probabilities decrease har-
monically in time: Pr{R(¢)]=1/t. An alternative representa-
tion of Rényi’s theorem is given by:

PAR() N -+ N R()] =~ (1)
L Kk
Equation (1) holding for all finite and increasing sequences
of integers 1 <t;<---<f.

A remarkable feature of Rényi’s theorem is its universal-
ity: The statistics of the record events {R(r)},~, are invariant
with respect to the distribution of the underlying i.i.d. ran-
dom scores {X(#)},~,. To illustrate the universality of Rényi’s
theorem consider the aforementioned random walk example:
No matter the distribution governing the random walker’s

*eliazar @post.tau.ac.il
"klafter @post.tau.ac.il

1539-3755/2009/80(6)/061117(7)

061117-1

PACS number(s): 02.50.—r

jumps—e.g., be they bounded or unbounded, or be they
Gaussian or Lévy flights—the temporal statistics of the
record jumps are always governed by Eq. (1) and are unaf-
fected by the jumps’ distribution.

A straightforward consequence of Rényi’s theorem re-
gards the waiting times {W(t)},=, for record events. Let W(z)
denote the waiting time—from time ¢ onwards—until the
occurrence of the first record event after time ¢. Rényi’s theo-
rem implies that the survival probability of the waiting time
W(r) is given by:

Pr{W(t) > w]= ol +t[wj , (2

(w=0; |w] denoting the integer part of w). Note that the
waiting time W(7) is heavy tailed, and has an infinite mean
(W(t))=00. Also note that the universality of Rényi’s theorem
is further induced to the waiting times: The distributions of
the waiting times {W(r)},~, are invariant with respect to the
distribution of the underlying i.i.d. random scores {X(#)},~.
The statistical model underlying Rényi’s theorem—
henceforth termed “Rényi’s model”’—considers the addition
of one single score X(7) at every discrete time step
(r=1,2,--+). Rényi’s model can be adapted to a continuous-
time setting by considering the following Poissonian model
[12]: Scores of value x arrive, continuously in time, accord-
ing to the Poissonian rate r(x). In the Poissonian model the
following counterpart of Rényi’s theorem holds [12]: The
epochs of record arrivals form an inhomogeneous temporal
Poisson process with harmonic intensity A(z)=1/¢ (£>0).
Extensions and generalizations of the waiting time result
of Eq. (2), in both discrete-time and continuous-time set-
tings, were explored in [13,14]. The research paper [13] con-
sidered the Poissonian model, and introduced and explored
geometric waiting times: given that the current record level is
l, and given a parameter k> 1, how long would we have to
wait till the occurrence of a record event whose magnitude is
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at least k times greater than the magnitudes of all the record
events preceding it? The research paper [14] considered both
Rényi’s model and the Poissonian model, and introduced and
explored oligarchy waiting times: observing the “oligarchy”
of the top n scores, how long would we have to wait—from
time 7 onwards—until a change takes place in this oligarchy?
The oligarchy waiting times turned out to establish a univer-
sal mechanism for the temporal generation of Paretian
power-law distributions with arbitrary integer-valued expo-
nents.

Equations (1) and (2) imply the aging of the record events
{R(#)},~: the occurrence of the record events is nonstation-
ary and becomes more and more scarce as time progresses.
Indeed, the probability Pr{R(z)] decreases harmonically in
time, and the median of the waiting time W(z) grows linearly
in time Med[W(z)]=1t. This fact, however, does not comply
with our real-life experience (as well as with the yearly up-
dated editions of the Guinness Book of Records). Indeed, in
real-life record events are rare—but yet the replacement of
old records by new ones is encountered every so often.

One possible reason for the discrepancy between Egs. (1)
and (2) and our real-life experience is change. Rényi’s model
considers the random scores to be identically distributed. In
reality, the probability laws of the random scores {X()},~,
may be time dependent—manifesting the “improvement” of
scores as time progresses. Models considering independent,
yet not identically distributed, random scores were investi-
gated in [15,16] (see also references therein).

Another possible reason for the discrepancy between Egs.
(1) and (2) and our real-life experience is growrh. Rényi’s
model considers the addition of one single score at every
time step. In reality however, score populations often grow
stochastically and at every time step a random number of
scores—rather than a single score—are added. The occur-
rence of records in score populations which grow determin-
istically (as time progresses) was studied in [17,18]. In this
paper we explore the occurrence of records in score popula-
tions which grow stochastically—their growth governed by
arbitrary stochastic dynamics.

In the context of the aforementioned random walk ex-
ample Rényi’s model corresponds to tracking the jumps of a
single random walker, whereas in this paper we track the
jumps of a growing population of random walkers. The
growth can take place, for example, by the addition of ran-
dom walkers arriving stochastically in time. Yet another
growth example is a population of random walkers which
performs a Galton-Watson branching process—each random
walker splitting, stochastically in time, into several i.i.d. ran-
dom walkers.

The manuscript is organized as follows. In Sec. I we
present a stochastic growth model for score populations, and
present the counterparts of the Rényi’s model results—Eqs.
(1) and (2). In Sec. III we study the stochastic growth model
from a financial perspective—presenting the intrinsic dis-
count rates of the score populations, and using these rates in
order to further investigate the occurrence of records in sto-
chastically growing score populations. Regarding the three
key features of Rényi’s model—universality, independence,
and aging—our research concludes that:

(i) The universality with respect to the distribution of the
underlying i.i.d. random scores, encountered in Rényi’s
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model, holds also in the general stochastic growth model.

(ii) The independence of the record events encountered in
Rényi’s model fails, in general, to hold. However, this inde-
pendence is maintained when the score-population’s growth
is deterministic and when the score population’s intrinsic dis-
count rates form an i.i.d. process.

(iii) The aging of the record events encountered in Rényi’s
model holds in the general case where the score-population’s
random score additions form an ergodic process.
Stationarity—counterwise to aging—of the record events
holds in the general case where the score population’s intrin-
sic discount rates form a stationary process.

Consequently, we asserts that:

(i) When the score-population’s intrinsic discount rates
form an i.i.d. process then the record events form a Bernoulli
process—thus maintaining the independence structure of Ré-
nyi’s model, while yielding stationarity (rather than aging) of
the record events.

Throughout the manuscript we consider specific models
of stochastic growth: deterministic score additions; ergodic
score additions; stationary score additions; ergodic discount
rates; stationary discount rates; i.i.d. discount rates.' Each of
these models is statistically analyzed, and its statistics are
compared to the Rényi’s model statistics.

II. STOCHASTIC GROWTH MODEL

We consider the following stochastic growth model of the
score population: At time ¢ a random number A(7) of i.i.d.
random scores is added to the score population; the sequence
of score additions {A(¢)},~; is an arbitrary random process
with arbitrary stochastic dynamics. The size of the score
population at time ¢ is thus given by N(5)=A(1)+---+A(7).
Note that Rényi’s model is a special case of the stochastic
growth model with A(r)=1 and N(r)=t. Examples of the
stochastic growth model include:

(i) Sports records: A(r) being the number of marathon
runners having retired at year f; the score of each retiree
being her/his best marathon result.

(ii) Flight records: A(r) being the number of aviators hav-
ing retired at year #; the score of each retiree being her/his
flight hours.

(iii) Birth records: A(z) being the number of babies born
at year t; the score of each baby being her/his weight at birth.

(iv) Construction records: A(z) being the number of build-
ings constructed at year ¢; the score of each building being its
constructed area.

(v) Insurance records: A(f) being the number of life-
insurance contracts issued at year t; the score of each con-
tract being its value (measured relative to the average income
per capita at year 7).

In the stochastic growth model we say that a record event
occurs at time ¢ if one of the scores added at time ¢ is greater
than all scores accumulated up to time ¢ (including the scores

'Recall that a random process {&(1)},_, is ergodic if its temporal
averages lTE[T:l fLE@)] converge to a deterministic limit as 7— o0
(the convergence holding, for any test function f(-), with probabil-
ity one).
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added at time 7). As above, we let R(¢) denote the record
event {a record occurred at time t}. The definition of the
waiting times {W(t)},=, in the stochastic growth model is as
in Rényi’s model.

A. Analysis

The counterpart of the Rényi’s model results—namely,
Eqgs. (1) and (2)—are given, respectively, by: (i)

Aty) A1)
N(t,) > )

N(1))
[Eq. (3) holding for all finite and increasing sequences of
integers 1 <r;<---<t]; (i)
N(1)
> (4)

N(t+|w))

Pr[R(t;) N -+ N R(rk)]=<

Pr{W(t) > w]= <

(w=0).The proofs of Egs. (3) and (4) are given in the Ap-
pendix. Note that substituting the Rényi model growth—
namely, A(f)=1 and N(¢) =r—into Egs. (3) and (4) yields
back, respectively, the Rényi model results of Egs. (1) and
(2). As in the case of Rényi’s model, the results obtained are
universal with respect to the distribution of the underlying
i.i.d. random scores. However—counterwise to Rényi’s
model—in the stochastic growth model the record events
{R(?)},~ are, in general, dependent events.

B. Deterministic score additions

Consider now the deterministic additions model in which
the score additions {A(#)},~, form a deterministic process.
This model was introduced in [17] and further explored in
[18]. Note that Rényi’s model—for which A(r) = 1—is a spe-
cial case of the deterministic additions model. This model
retains the independence structure of Rényi’s model—
rendering the record events {R(f)},~, independent. Three il-
lustrative examples of the deterministic additions model are:

(i) Score populations with power-law growth: N(z)=~1*
(with exponent a>0). In this example the record probability
Pr{R(z)] follows an asymptotically harmonic decrease, and
the scaled waiting time W(r)/¢ is asymptotically Pareto-
distributed (with exponent «):

PR~ % p{@ > w} S (5)

(1+w)”

(r>1; w=0).

(ii) Score populations with stretched-exponential growth:
N(r) =exp(t*) (with exponent 0 < @< 1). In this example the
record probability Pr[R ()] follows an asymptotically power-
law decrease and the scaled waiting time W(¢)/t'~* is asymp-
totically exponentially distributed (with mean 1/ ):

P{R(1)] = tli_a; Pr[ ‘:]/EZ) > w] =~exp(—aw) (6)

(t>1; w=0).

(iii) Score populations with exponential growth: N(r)
~exp(«t) (with rate k>0). In this example the record prob-
ability Pr{R(z)] is asymptotically constant, and the waiting
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time W(r) is asymptotically exponentially distributed (with
mean 1/k):

Pr{R()]~ 1 -exp(=«); P{W(r) >w]= exp(- dw))

(7

(t>1; w=0). The derivations of Egs. (5) and (6) are given
in the Appendix. Note that in the first two examples—power-
law and stretched-exponential growth—aging of the record
events {R(7)},~, takes place. Namely, the occurrence of the
record events is nonstationary and becomes more and more
scarce as time progresses. In the third example however—
exponential growth—the record events {R(#)},~.; are asymp-
totically stationary. For growth of the type N(r)=exp(t%)
further note the dramatic phase transition taking place as the
exponent « changes from a<1 (example 2) to a=1 (ex-
ample 3).

C. Ergodic and stationary score additions

Consider now the ergodic additions model in which the
random score additions {A(r)},=, form an ergodic process
with ergodic average 5=1imT_,wlTEtT=1A(t). Note that Rényi’s
model—for which A(r)=1—is a special case of the ergodic
additions model (with ergodic average A=1).

In the ergodic additions model the record events {R(?)},~,
are, in general, dependent events. Yet, the aging encountered
in Rényi’s model holds also in the ergodic additions model.
Indeed, Egs. (3) and (4)—combined together with the ergod-
icity of the random process {A(7)},~,—imply that: (i) the
record probability Pr{R(z)] follows an asymptotically har-
monic decrease:

A1

P{R()] = —=-, (8)
A t

(r>1); (ii) the scaled waiting time W(z)/r is asymptotically
Pareto-distributed (with exponent a=1):
W(r 1

Pr[ T() > w] ~ 9)

1+w

(t>1; w=0). The derivations of Egs. (8) and (9) are given
in the Appendix. If the random score additions {A(?)},=;
form a stationary process then stationarity further implies
that the ratio (A(f))/A appearing in Eq. (8) equals unity.
(Recall that the feature distinguishing between ergodicity
and stationarity is periodicity. Namely, ergodic processes can
be periodic, while stationary processes cannot. The simplest
example of a nonstationary ergodic process is the alternating
sequence {0,1,0,1,---}.)

III. INTRINSIC DISCOUNT RATES

The deterministic examples presented in Sec. II B demon-
strated two dramatically different statistical behaviors the
record events {R(1)},~, can exhibit: aging and stationarity.
In Sec. I C we further concluded that the general case of
ergodic additions always leads to aging of the record events.
On the other hand, in Sec. II B we saw that deterministic
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exponential growth leads to stationarity of the record events.
Is the stationarity exhibited by deterministic exponential
growth unique—or is it shared by other stochastic growth
models? In order to answer this question we need explore the
geometric structure of the stochastic growth, and to that end
we now turn to analyze the growth dynamics from a financial
perspective.

Consider the random process {N(7)},~,. The process’s in-
trinsic interest rate I(r) at time t>1 is given by: N(z)=[1
+1(2)]N(t—1). And, the process’s intrinsic discount rate D(t)
at time > 1 is given by: D(r)=1/[1+1(z)]. Namely, the score
population’s intrinsic discount rates {D(¢)},~., are given by
the ratios D(r)=N(t—1)/N(z) (note that these ratios take val-
ues in the unit interval).

In terms of the intrinsic discount rates {D(¢)},~; Egs. (3)
and (4) admit, respectively, the following representations: (i)

Pr[R(t)) N - N R(t)]={[1-D()]--[1-D()],
(10)

[Eq. (10) holding for all finite and increasing sequences of
integers 1<r;<---<r.]; (i)

Pr{W(r) > w]=(D(t+1) - D(t +|wl))), (11)

(w=0). The derivations of Egs. (10) and (11) are given in
the Appendix.

An immediate implication of the intrinsic discount rates
representation regards the correlation structure of the record
events {R(f)},~,. Indeed, Eq. (10) implies that the autocor-
relation function of the record events {R(f)},~, coincides
with the autocorrelation function of the intrinsic discount
rates {D(1)},~1:

PIR(1),R(s)]=p[D(1).D(s)], (12)

[Eq. (12) holding for all integers 7,s>1]. The derivation of
Eq. (12) is given in the Appendix.

A. Ergodic discount rates

Consider now the ergodic discount rates model in which
the intrinsic discount rates {D(¢)},~, form an ergodic process
with ergodic average [_):limr_,oclTE,T:le(t). Note that the
“log-returns” {L(7)},~, of the random process {N(7)},~, are
given by L(1)=In[N(1)/N(t—1)]=-In[D(¢)] and let L denote
the ergodic average of the log-returns: Z:limTﬂwlTEtT:;L(t).

The ergodic discount rates model exhibits a markedly dif-
ferent statistical behavior than Rényi’s model—yielding
asymptotic stationarity, rather than aging, of the record
events {R(7)},~,. Indeed, Egs. (10) and (11)—combined to-
gether with the ergodicity of the random process
{D(t)},~,—imply that: (i) the long-term average of the record

probabilities {Pr{R(r)]},~, and the ergodic average D of the
intrinsic discount rates {D(#)},~; sum up to unity:
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T

1 _
lim=>, Pi[R(t+k)]=1-D, (13)
T—oo Tk=1

[Eq. (13) holding for all integers t>1]. (i) The waiting
times {W(r)},~, are asymptotically exponentially distributed
(with mean 1/L):

Pi{W(r) > w] = exp(— Lw), (14)

[Eq. (14) holding for all integers t=1; w>1]. The deriva-
tions of Egs. (13) and (14) are given in the Appendix.

B. Stationary discount rates

Consider now the stationary discount rates model in
which the intrinsic discount rates {D(¢)},~, form a stationary
process. As in the case of the ergodic discount rates model,
this model exhibits a markedly different statistical behavior
than Rényi’s model—yielding stationarity, rather than aging,
of the record events {R(?)},~;. Indeed, Egs. (10) and (11)
combined together with the stationarity of the random pro-
cess {D(t)},~,—imply that: (i) the record events {R(?)},~,
form a stationary sequence of random events—with constant
occurrence probability

Pr{R(1)]=1-(D(2)). (15)

(ii) The waiting times {W(r)},=, form a stationary sequence
of random variables—their probability law governed by the
temporally invariant survival probability

Pr{W(t) > w]=(D(2) --- D(1 +|w))) (16)
(w=0).

C. Li.d. discount rates

Finally, consider the i.i.d. discount rates model in which
the intrinsic discount rates {D(f)},~, form an i.i.d. process—
i.e., a sequence of i.i.d. random variables—with generic ran-
dom value D. In this model the record events {RR(7)},~, form
a Bernoulli process. Indeed, Egs. (10) and (11)—combined
together with the ii.d. structure of the random process
{D(1)},~,—imply that: (i) The record events {R(f)},~, are
i.i.d. random events—with constant occurrence probability

Pr{R(t)]=1-(D). (17)

(ii) The waiting times {W()},~, form a stationary sequence
of geometrically distributed random variables—their prob-
ability law governed by the geometric survival probability

P W(t) > w]= (D) (18)

(w=0). Counterwise to Rényi’s model, in the i.i.d. discount
rates model: (i) the occurrence probabilities of the record
events Pr[R(¢)] are constant in time—rather than decreasing
harmonically in time; (ii) the waiting times {W(¢)},~, are
temporally invariant and geometrically distributed—rather
than time dependent and heavy tailed. On the other hand,
both the i.i.d. discount rates model and Rényi’s model share
the common feature of independent record events. Hence,
the i.i.d. discount rates model retains the independence struc-
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ture of Rényi’s model, while yielding stationarity—rather
than aging—of the record events {R(¢)},~.

IV. CONCLUSIONS

This research paper embarked from Rényi’s celebrated
record theorem. Rényi’s model was adapted and generalized
so that to accommodate the—rather prevalent—case of sto-
chastically growing score populations. The statistics of
record events—in score populations whose growth follows
arbitrary stochastic dynamics—were comprehensively ex-
plored and analyzed:

(i) A general analog of Rényi’s record theorem, as well as
a general formula for the distributions of the waiting times
for record events, were established. Both these results main-
tain the universality of Rényi’s model—i.e., they are invari-
ant with respect to the distribution of the underlying i.i.d.
random scores.

(ii) Counterwise to Rényi’s model, in the stochastic
growth model the record events were shown to be dependent
events—their correlation structure coinciding with the corre-
lation structure of the score population’s intrinsic discount
rates. It was further shown that the independence structure of
Rényi’s model is maintained when the score additions form a
deterministic process, and when the intrinsic discount rates
form an i.i.d. process.

(iii) Analogous to Rényi’s model, aging of the record
events was shown to hold in the general case where the score
additions form an ergodic process. Counterwise to Rényi’s
model, asymptotic stationarity (stationarity) of the record
events was shown to hold in the general case where the in-
trinsic discount rates form an ergodic (stationary) process.

(iv) The case of i.i.d. intrinsic discount rates was shown to
render the record events a Bernoulli process—hence main-
taining the independence structure of Rényi’s model, but yet
yielding stationarity of the record events.

The results obtained provide a general statistical machin-
ery for the quantitative analysis and prediction of the occur-
rence of record events in diverse fields of science—where
the underlying score populations grow stochastically.

APPENDIX

Throughout the Appendix: (i) f(x) and F(x) denote, re-
spectively, the probability density function and the cumula-
tive distribution function of the i.i.d. random scores; (ii) we
set £5:=0 and N(zy):=0; (iii) E[-] denotes mathematical ex-
pectation.

1. Proof of Eq. (3)

Let E(t;dx) denote the event {a record of magnitude x
€ (x,x+dx) took place at time t}. For 1<f <---<t, and
x;<---<x; we have

P{E(ty;dx,) N -+ N E(t;dx)|A]

k
= H F(xj)N(tj_l)_N(tj’l) : A(tj)F(xj)A(Tj)_lf(xj)dxj

J=1s

1 I
k

= [T Ay FGe)N NG5 f(x
j=1 (A1)
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[part I is the probability that all scores arriving at times
tig+1,6+2,+,1;—1 are smaller than x;; part II is the
probability that among all scores arriving at tlme t; one is of
magnitude x € (x;,x;+dx;), and all other are smaller than x;].
Now:

PR, N -+

=fJ PHE(f;dx,) N -+ N
X<t <xp

NR,JA]

[using Eq. (A1)]
-] (HA@W&WWMl*wwa,
x<ree<xp j=1
(A3)
[using the change in variables u;=F(x,), -, u;=F(x;)]
:ff (HA(I)M (t)-N(t;_y) ldu)
0<uy<-+<u<1 \ j=1
(Ad)

(integrating the variable u;)

(l‘ ) k
A =240 H A )=N(t;_{)—
1 0<up<---<u<1 Jj=2

(A5)
(integrating the variable u,)
_A) A) J f
- N(t) N(1) 0<uy <+ <uy<1
><(1,t13v(’2 11 A(t)) uj.v(’f) ~N(tj-1) 'duj) , (A6)
j=3

(continuing by induction)

:A(n) L A1) (ukN(tk_l)A(tk)uiV(tk)—N(tk_])—lduk)’
N(t;)  N(ty) 0<u<1
(A7)
(integrating the variable u;)
At A(ty) Az
_AM) | A A 8)
N(t)) Nty Nt
Finally, using probabilistic conditioning, we conclude that:
PR, N -~ NR, I=E{PR, N - N R,k|A]}
At At
:E[(on_(a]‘ (49)
N(t) Nt

2. Proof of Eq. (4)

Let M" denote the maximal score attained by scores added
at times a,a+1,---,b. Then:
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Pr{ M’ < x|A] = F(x)V)-Ne=D), (A10)

and the corresponding probability density function is given
by

Fua®) = [N(b) = N(a = DIF)MO-NeD=1 f().

(A11)
Now:
P W, > w|A] = Pi[W, > |w]A], (A12)
(using probabilistic conditioning)
E[Pr(W, > |w]|A,M")] = E[Pr(M"" < M!|A, M),
(A13)
[using Eq. (A10)]
=E[F(M})ND-NO|A ], (A14)
[using Eq. (A11)]
= J FoyNeD=NO TN F (MO~ £(x) Jdx
=N(1) f FyM= f(x)d, (A15)
[using the change in variables u=F(x)]
1
N(1)
=N(1) f N gy = —— (A16)
0 N(t+|w))

Finally, using probabilistic conditioning, we conclude that:

N(?) ]
N(t+w)) |
(A17)

Pi[W, > |w]] = E[Pr(W,>|wl]|A)] = E{

3. Derivation of Eqs. (5)-(14)
Eq. (5). Substituting N(¢) = ¢* into Egs. (3) and (4) yields

PR ()] ~ ﬂ_(tt—a_l)az - (1 -%)az % (A18)

and

Pr[m > W:| r ! !

t - (t +tw)® - (1 +[tw)n)e - (1 +w)*
(A19)

Eq. (6). Substituting N(z) =exp(r®) into Egs. (3) and (4)
yields
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exp(r?) —exp((r = 1)%)
exp(z%)

R T

Pr{R(1] =

and

W(r) B exp(t%)
Pr[ - - W] ~exp((t+ 11 w))®)

el
o1z

~ exp(- aw). (A20)

Eq. (7). Substituting N(r) =exp(«t) into Egs. (3) and (4)
yields

exp(kt) —exp[k(t—1)]

Pr[R(1)] = =1-exp(- ),
exp(«t)
(A21)
and
PUW() = ] ~ exp(«t) B ol
W) >w] =~ —exp[K(t+[wJ)] =exp(— dw)).
(A22)

Eq. (8). From Eq. (3) we obtain that

[ AG)
Pi{R()]=E _ m]

A()
A+ -+ AQ)

I IO R [ PG Y
=E A+ -+ A |1t E[ ]

t

_EEA(r)]l
===

Eq. (9). From Eq. (4) we obtain that
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W(r) [ N(1)
PI[T - W] =E _N(t+[th):|

[ A1)+ -+ A1) ]

“F 8+ v A
[ A+ -+ AQ)
-E t t
T A+ o+ A +w) |1+ w)
t+|tw]

A 1+¥ I+w

Eq. (10). Using the relation D(#)=N(t—1)/N(t) we obtain
that

& B N({) - N(t-1)

Mo~z D TPo

(A25)

Substituting Eq. (A25) into Eq. (3) yields Eq. (10).
Eq. (11). Using the relation D(1)=N(t—1)/N(z) we obtain
that

N(1) _ N(t) N@+1) mN(t+[wJ— 1)
N +[wl) ~ N+ 1)N(t+2) N(t+|w))
=D(t+ 1)D(+2) - D(t+|w)). (A26)

Substituting Eq. (A26) into Eq. (4) yields Eq. (11).
Eq. (12). Using Eq. (10), the covariance between the
record events R(z) and R(s) is given by
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Cov[R(t),R(s)]=Pi[R(t) N R(s)] = Pr[R(t)]Pr{R(s)]
=E{[1-D®][1-D(s)]} - E{[1-D(®)]}
XE{[1-D(s)]} = Cov[D(t),D(s)].
(A27)

Consequently, the correlation between the record events R(r)
and R(s) is given by

Cov[R(1),R(s)]
VCOV[R(1), R(1)]Cov[R(s), R(s)]
Cov[D(1),D(s)]
\VCov[D(#),D(1)]NCov[D(s),D(s)]
=p[D(1),D(s)].

Eq. (13). From Eq. (10) we obtain that
T T

12 P{R(t+k)] = 12 E[1-D(t+k)]
Tk:l Tk:l

PIR(1).R(s)]

(A28)

T
=1 —E[lZ D(t+k)] . (A29)
Tk:l

Ergodicity further implies that limTMclTE,{:lD(H k)=D, and
hence Eq. (13) follows.
Eq. (14). From Eq. (11) we obtain that

Pr{W(t) > w]=E{exp[- L(t + 1)]--- exp[— L(t +|w])]}

[w]
:E[E L(z+k)] )
k=1

(A30)

Ergodicity further implies that limwﬂmiﬁlkﬁle(Hk):Z, and
hence Eq. (14) follows.
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